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Adaptive Prior Weighting

I. Power prior in clinical trials (joint with Isaac Gravestock)

II. Generalized Regression (joint with Rafael Sauter)
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Prior-Data Conflict

“Bayesian: One who, vaguely expecting a horse

and catching a glimpse of a donkey, strongly

concludes that he has seen a mule.”

Senn (2007)
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Adaptive Prior Weighting

“Bayesian: One who, vaguely expecting a horse

and catching a glimpse of a donkey, concludes

that he has seen . . . most likely a donkey!”

not Senn (2007)
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Where Does the Prior Come From?

1 Historical data

Spiegelhalter and others (2004)

2 Expert opinion

O’Hagan and others (2006)

3 Structural considerations

Greenland (2006, 2007)

e. g . Pr(1/10 ≤ OR ≤ 10) = 0.95 in logistic regression

4 Proper default priors in regression
I Ridge prior
I g -prior
I Lasso
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The Power Prior

Prior Distribution Historical Data

Power Prior Current Data

Posterior Distribution
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The Power Prior

1 Start with a prior on the parameter θ, maybe uninformative or uniform

p0(θ)

2 Update the prior based on the likelihood L(θ; x0) of historical data x0
raised to a power δ between 0 and 1

p(θ | δ, x0) ∝ L(θ; x0)δp0(θ)

Ibrahim and Chen (2000)

→ If the historical study has n0 patients, then the prior sample size is δn0
3 Current study has n? patients and data x?, say.

4 Current study is combined with power prior to posterior

→ Total sample size is n? + δn0
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Unknown Power Parameter

I Treat δ as unknown and include prior p0(δ)

I Requires normalisation:

p(θ, δ | x0) = p(θ | δ, xo) p0(δ)

=
L(θ; x0)δp0(θ)∫
L(θ; x0)δp0(θ)dθ

p0(δ)

Duan and others (2006)
Neuenschwander and others (2009)

I Joint posterior:

p(θ, δ | x?, x0) ∝ L(θ; x?) p(θ, δ | x0)
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Choosing δ

Possible approaches for choosing δ from the literature:

I Pick some fixed values and do a sensitivity analysis afterwards

I Don’t. Integrate it out of joint posterior and use a fully Bayesian
approach

We propose an empirical Bayes (EB) method:

I Combines Bayesian and classical ideas

I Select the best prior based on the data

I Maximise the marginal likelihood to choose δ:

δ̂EB = arg max
δ∈[0,1]

L(δ; x0, x?)

= arg max
δ∈[0,1]

∫
L(θ; x?)L(θ; x0)δp0(θ)dθ∫

L(θ; x0)δp0(θ)dθ
.
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Binomial Model

Want to estimate true proportion θ

I Initial prior: θ ∼ Beta(a, b)

I Historical data: X0 ∼ Bin(n0, θ)

I Current data: X? ∼ Bin(n?, θ)

I Prior for power parameter δ (for fully Bayesian approach):
δ ∼ Beta(α, β)
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Antibiotics Trials

I Treating nosocomial pneumonia

I 2 studies comparing Linezolid and Vancomycin

I Binary outcome: all cause mortality

Study Linezolid Vancomycin

Rubinstein (2001) 36/203 (18%) 49/193 (25%)
Wunderink (2003) 64/321 (20%) 61/302 (20%)
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Vancomycin Estimates

I Start with uniform priors on θ (and δ)
I Use Rubinstein results as historical data: x0/n0 = 49/193
I Empirical Bayes: δ̂ = 0.44 → prior sample size δ̂n0 = 86
I Posterior mean: δ̂ = 0.52 → prior sample size δ̂n0 = 101

Posterior of δ Posterior of θ
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Operating Characteristics

I Viele et al. (2014) look at performance of various borrowing methods
for the control arm of a randomized controlled clinical trial (RCT).

I Expected Prior Sample Size
I Mean Square Error
I Power
I Type I Error

I Binomial setting:

Historical control arm data: x0 = 65, n0 = 100
Current control arm data: X? ∼ Bin(n? = 200, π?)
Current treatment arm data: XT ∼ Bin(nT = 200, πT )

I “Bayesian Significance” if Pr(πT > π?) > 0.975

I Empirical Bayes compares favourably!
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Expected Prior Sample Size
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Mean Square Error
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Power to Detect Difference πT − π? = 12%
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Type I Error πT − π?
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Box’s p-value

I Box (1980) defined a p-value to measure conflict between prior and
data X? = x?:

Pr (p(X? | x0) ≤ p(x? | x0))

→ Probability that observed (or more extreme) data could come from
prior predictive distribution p(x? | x0)

I Low p-values suggest that prior is in conflict with data

I Calculate predictive distribution by

p(x? | x0) =

∫
θ

∫
δ
p(x? | θ)× p(θ, δ | x0) dδdθ
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Box’s p-value for Power Prior

I Power prior based on normal likelihood: X0 ∼ N(θ, 0.22)
I Current data also normal: X? ∼ N(θ, 0.22)
I Uniform prior on θ (and δ)
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→ EB automatically adjusts compatibility between prior and data.
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II. Adaptive Prior Weighting in Regression

I A multivariate normal prior distribution on the regression coefficients
is a natural choice, especially if prior comes from historical data.

I However, careless specification of mean and covariance matrix may
have strong effects on posterior inference.

I We discuss empirical and fully Bayesian approaches to avoid extreme
prior-data disagreement and agreement, by adaptively weighting the
prior distribution.

I The proposed methodology provides an alternative to the recently
proposed Cauchy prior distributions for the regression coefficients of
suitably standardized covariates.

Gelman and others (2008)
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Preliminaries: Prior Weighting in the Linear Model

Consider the linear model with mean

E(yi ) = α + x>i β

with residual variance σ2 and centred regression coefficients X>1 = 0.
An improper reference prior for α and σ2, f (α, σ2) ∝ σ−2, is combined
with a proper normal prior for β:

β |σ2 ∼ Nd(ν, g σ2Σ)

→ Prior weight δ = 1/g > 0

Note: Prior weight δ can be larger 1

→ Prior up- and downweighting possible
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The g -prior

I Zellner’s g -prior (Zellner, 1986) uses Σ = (X>X)−1

→ Shrinkage of β̂ML towards ν:

E(β | y) =
β̂ML + 1/g · ν

1 + 1/g

I For ν = 0 we have
E(β | y) =

g

g + 1
β̂ML

→ Shrinkage factor t = g/(g + 1)
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Box’s p-Value

I Take β̂ML as the “data” with distribution

β̂ML |β, σ2 ∼ Nd

(
β, σ2 (X>X)−1

)
I Combined with prior β |σ2 ∼ Nd(ν, g σ2Σ) we obtain the prior

predictive distribution

β̂ML |σ2 ∼ Nd

(
ν, σ2

{
(X>X)−1 + g Σ

})
so

T (g) =
(
β̂ML − ν

)> {
(X>X)−1 + g Σ

}−1 (
β̂ML − ν

)
/σ2

can be evaluated against a χ2(d) distribution.

I Exact calculation based on F -distribution is also possible.
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Box’s p-Value: Some Properties

I Box’s p → 1 for the “uninformative” choice g →∞
I Copas (1983) has derived an empirical Bayes (EB) estimate of g

under the g -prior:
ĝ = max{Fobs − 1, 0},

where Fobs is the F statistic for H0 : β = ν.

→ For Fobs > 1, one can show that Box’s p-value is p ≈ 0.5, i. e.
empirical Bayes automatically adjusts the compatibility between the
prior and the data.

I This suggests to estimate g for arbitrary prior covariance matrix Σ by
solving the equation T (g) = E{χ2(d)} = d for g , i. e.

ĝ =

{
T−1(d) if T (0) > d
0 else
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Generalized Linear Model

I Consider now a generalized linear model (GLM) with outcomes yi
with mean µi = h(ηi ) and linear predictor

ηi = α + x>i β

I Prior f (α) ∝ 1 combined with β ∼ Nd(ν, g Σ)

I MLE β̂ML, where β̂ML |β ∼ Nd(β,T ), is used to evaluate

T (g) = (β̂ML − ν)>(T + g Σ)−1(β̂ML − ν)

against a χ2(d) distribution to compute Box’s p-value.

I EB estimate under the (generalized) g -prior based on the deviance
zobs (Copas, 1997):

ĝ = max{zobs/d − 1, 0}.

I Can be extended to arbitrary Nd(ν, g Σ) prior by solving T (g) = d .
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Application: Study on Obstetric Care and Neonatal Death

From Sullivan and Greenland (2013):

Table 1 Multiple logistic regressions of neonatal-death risk in a cohort of 2992 births with 17 deaths, intercept and 14 regressors in each model. Shown are the prior
median odds ratio ORprior and 95% limits; ML estimates with 95% Wald and profile-likelihood (profile) limits; approximate posterior medians from data augmentation
including a prior on all 14 regressors with 95% Wald and profile limits, using prior data with ½ correction (A¼ 4.5) or with rescaled prior data (S¼ 10, A¼ 400); and
simulated posterior medians and 95% limits (2.5th and 97.5th percentiles) from MCMC with normal priors

Regressor (Xj)
Deaths

with Xj>0

Prior median
ORprior (95%
prior limits)

ML estimate:
A¼ 0 (95% Wald and

profile limits)

Approximate posterior median (95% posterior limits)

Data augmentation:
A¼ 4.5a

Data augmentation
with a rescaled
(S¼ 10) priora MCMCb

Non-White 5 2 (0.5,8) 1.9 (0.55,6.5) (0.51,6.3) 1.8 (0.75,4.2) (0.72,4.1) 1.8 (0.73,4.3) (0.71,4.2) 1.8 (0.70,4.2)

Early age 3 2 (0.5,8) 1.6 (0.39,6.7) (0.32,6.1) 1.6 (0.65,4.1) (0.62,3.9) 1.6 (0.63,4.1) (0.61,4.0) 1.6 (0.59,4.0)

Nulliparity 8 2 (0.5,8) 1.5 (0.51,4.7) (0.50,4.9) 1.6 (0.69,3.5) (0.68,3.6) 1.5 (0.67,3.6) (0.67,3.6) 1.6 (0.67,3.6)

Gestational age 10 4 (1,16) 4.9 (2.4,9.8) (2.4,10.0) 4.5 (2.5,8.0) (2.5,8.1) 4.5 (2.5,8.1) (2.5,8.1) 4.6 (2.5,8.3)

Isoimmunization 1 2 (0.5,8) 3.0 (0.91,10) (0.62,8.5) 2.4 (0.95,6.0) (0.87,5.6) 2.4 (0.94,6.2) (0.85,5.7) 2.3 (0.81,5.6)

Past abortion 2 1 (0.25,4) 0.72 (0.18,2.9) (0.12,2.3) 0.84 (0.34,2.1) (0.31,1.9) 0.83 (0.33,2.1) (0.31,1.9) 0.79 (0.29,1.9)

Hydramnios 1 4 (1,16) 60 (5.7,635) (2.8,478) 5.8 (1.6,21) (1.6,22) 6.1 (1.6,23) (1.6,23) 6.0 (1.6,22)

Labour progress 2 2 (0.5,8) 0.50 (0.06,3.9) (0.04,2.8) 1.3 (0.45,3.5) (0.42,3.3) 1.2 (0.43,3.5) (0.41,3.3) 1.2 (0.40,3.3)

PCA 1 2 (0.5,8) 3.1 (0.33,29) (0.15,20) 2.2 (0.71,7.1) (0.67,7.0) 2.3 (0.68,7.5) (0.65,7.2) 2.2 (0.64,7.1)

No monitor 3 2 (0.5,8) 1.2 (0.32,4.9) (0.35,5.9) 1.8 (0.68,4.5) (0.70,4.7) 1.7 (0.66,4.6) (0.68,4.8) 1.8 (0.71,5.0)

Twin, triplet 3 4 (1,16) 8.2 (1.8,37) (1.5,33) 5.1 (1.9,14) (1.8,14) 5.2 (1.9,15) (1.8,14) 5.3 (1.8,14)

Public ward 6 2 (0.5,8) 0.86 (0.26,2.9) (0.25,2.8) 1.3 (0.56,3.0) (0.54,3.0) 1.3 (0.54,3.0) (0.53,3.0) 1.3 (0.53,3.0)

PROM 1 2 (0.5,8) 0.54 (0.06,4.8) (0.03,3.2) 1.3 (0.45,3.5) (0.41,3.3) 1.2 (0.43,3.5) (0.41,3.3) 1.2 (0.39,3.3)

Malpresented 3 4 (1,16) 3.9 (0.88,17) (0.73,15) 3.9 (1.5,10.0) (1.4,9.8) 3.9 (1.4,10) (1.4,9.9) 3.8 (1.4,10.0)

ML: Maximum likelihood; MCMC: Markov-chain Monte Carlo; PCA: placental or cord anomaly. PROM: premature rupture of membranes.
Variables are indicators except early age (0¼ 20þ, 1¼ 15À19, 2¼under 15), gestational age (0¼no, 1¼ 36À38 weeks, 2¼ 33À36 weeks; under 33 weeks excluded),
isoimmunization (0¼no, 1¼Rh, 2¼ABO), labour progress (0¼no, 0.33¼ prolonged, 0.67¼ protracted, 1¼ arrested) and past abortion (0¼none, 1¼ 1, 2¼ 2þ).
aLimits shown are Wald exp(estimateÇ 1.96Â standard error) and profile likelihood from PROC LOGISTIC.
bNumber of MCMC samples was 100 000
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Assessment of Prior-Data Conflict

Prior I: N14(ν, g Σ) (Sullivan and Greenland (2013) prior)
Prior II: N14(0, g Σ) (ridge prior)

with

ν = log(2, 2, 2, 4, 2, 1, 4, 2, 2, 2, 4, 2, 2, 4)>

Σ = diag(1/2)

I Prior I gives Box’s p = 0.91 (!) for g = 1.

I Prior II gives Box’s p = 0.13 for g = 1.

→ no evidence for prior-data conflict under both priors.

I The EB estimates are ĝ = 0 (p = 0.60) and ĝ = 2.10 (p = 0.45)

I However, EB estimates ĝ = 0 are useless for parameter estimation.
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Hyper-g Prior

I The EB approach avoids arbitrary choices of g which may be at odds
with the data. However, the uncertainty about the estimate ĝ is
ignored and the posterior of β is degenerate for ĝ = 0.

I We propose to use the hyper-g prior with shrinkage factor

t = g/(1 + g) ∼ U(0, 1)

Liang and others (2008)

→ Prior median of g is 1, distribution of g and δ = 1/g are the same.

→ No preference regarding up- or downweighting

I Under the g -prior, posterior mode of t is equal to the corresponding
EB estimate.

Held and others (2015)

→ Hyper-g prior regularizes EB approach.
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Other Choices

I Horseshoe prior: t ∼ Be(1/2, 1/2)

Carvalho and others (2010)

I Strawderman-Berger: t ∼ Be(1, 1/2)

Berger (1980)

I Cauchy prior distributions for the regression coefficients corresponds
to a (possibly scaled) IG(1/2, 1/2) prior for g

Gelman and others (2008)
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Other Choices
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Implementation in INLA

I Rewrite linear predictor as

ηi = α + x>i ν︸︷︷︸
Offset

+x>i β̃ where β̃ ∼ Nd(0, g Σ).

→ Use generic Gaussian Markov random field (GMRF) with mean 0
and pre-specified precision matrix Σ−1 - up to the possibly unknown
multiplicative weight factor w = 1/g .

I Now use the copy feature in INLA to define d identical copies of β̃.

→ The j-th component of the j-th copy of β̃ is then multiplied with the
covariate values xj = (x1j , . . . , xnj)

> as a “weights vector”.

I Hyper-g (or any other) prior on g can be incorporated.
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Hyper-g Prior and Posterior in Neonatal Death Study
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Posterior of βhydram (Prior I)
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Posterior of βhydram (Prior II)
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Simulation Study (preliminary results)

1 Based on the (centred) design matrix X of neonatal death study
2 Draw k = 1, . . . , 100 times from misspecified prior

a) β(k) ∼ N(ν + ε 1,Σ), ε ∈ {−3,−2.5, . . . , 0, 0.5, . . . , 3}
b) β(k) ∼ N(ν, εΣ), ε ∈ {1/4, 1/2, 1, 2, 4}

3 Simulate y(k) ∼ Bin(1, expit{X>β(k)})
4 Use INLA with β ∼ N(ν, g Σ) prior and different hyperpriors for g .
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Simulation a): Mean estimate of g
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Simulation b): Mean estimate of g
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Simulation a): RMSE
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Summary and Outlook

I Empirical Bayes is useful to downweight historical data using the
power prior.

I In generalized regression, hyper-g prior regularizes EB and allows for
both up- or downweighting of the prior distribution.

I Approach can be viewed as replacing a normal prior on the regression
coefficients with a “robustified” scale mixture of normals prior.

I Implementation in INLA allows to extend the approach to more
complex models, e. g . generalized linear mixed models or spatial
models.

I Can also be generalized to several prior weight parameters for blocks
of regression coefficients.
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