Adaptive prior weighting in generalized regression

Leonhard Held

18. September 2015

Adaptive Prior Weighting

I. Power prior in clinical trials (joint with Isaac Gravestock)

II. Generalized Regression (joint with Rafael Sauter)

Prior-Data Conflict

"Bayesian: One who, vaguely expecting a horse and catching a glimpse of a donkey, strongly concludes that he has seen a mule."

Senn (2007)

Adaptive Prior Weighting

"Bayesian: One who, vaguely expecting a horse and catching a glimpse of a donkey, concludes that he has seen ... most likely a donkey!"

not Senn (2007)

Where Does the Prior Come From?

Historical data

Spiegelhalter and others (2004)

Expert opinion

O'Hagan and others (2006)

Structural considerations

Greenland (2006, 2007)

- e.g. $\mathsf{Pr}(1/10 \leq \mathsf{OR} \leq 10) = 0.95$ in logistic regression
- Proper default priors in regression
 - Ridge prior
 - g-prior
 - Lasso

The Power Prior

The Power Prior

() Start with a prior on the parameter θ , maybe uninformative or uniform

$p_0(\theta)$

Opdate the prior based on the likelihood L(θ; x₀) of historical data x₀ raised to a power δ between 0 and 1

$$p(\theta \,|\, \delta, x_0) \propto L(\theta; x_0)^{\delta} p_0(\theta)$$

Ibrahim and Chen (2000)

- ightarrow If the historical study has n_0 patients, then the prior sample size is δn_0
- Ourrent study has n_{*} patients and data x_{*}, say.
- Surrent study is combined with power prior to posterior
- ightarrow Total sample size is $n_{\star} + \delta n_0$

Unknown Power Parameter

- Treat δ as unknown and include prior $p_0(\delta)$
- Requires normalisation:

$$p(\theta, \delta | x_0) = p(\theta | \delta, x_o) p_0(\delta)$$

=
$$\frac{L(\theta; x_0)^{\delta} p_0(\theta)}{\int L(\theta; x_0)^{\delta} p_0(\theta) d\theta} p_0(\delta)$$

Duan and others (2006) Neuenschwander and others (2009)

Joint posterior:

$$p(\theta, \delta \mid x_{\star}, x_0) \propto L(\theta; x_{\star}) p(\theta, \delta \mid x_0)$$

Choosing δ

Possible approaches for choosing δ from the literature:

- Pick some fixed values and do a sensitivity analysis afterwards
- Don't. Integrate it out of joint posterior and use a fully Bayesian approach

We propose an empirical Bayes (EB) method:

- Combines Bayesian and classical ideas
- Select the best prior based on the data
- Maximise the marginal likelihood to choose δ :

$$\hat{\delta}_{EB} = \arg \max_{\delta \in [0,1]} L(\delta; x_0, x_\star)$$

=
$$\arg \max_{\delta \in [0,1]} \frac{\int L(\theta; x_\star) L(\theta; x_0)^{\delta} p_0(\theta) d\theta}{\int L(\theta; x_0)^{\delta} p_0(\theta) d\theta}$$

Binomial Model

Want to estimate true proportion θ

- Initial prior: $\theta \sim \text{Beta}(a, b)$
- Historical data: $X_0 \sim Bin(n_0, \theta)$
- Current data: $X_{\star} \sim {\sf Bin}(n_{\star}, heta)$
- Prior for power parameter δ (for fully Bayesian approach):
 δ ~ Beta(α, β)

Antibiotics Trials

- Treating nosocomial pneumonia
- > 2 studies comparing Linezolid and Vancomycin
- Binary outcome: all cause mortality

Study	Linezolid	Vancomycin	
Rubinstein (2001)	36/203 (18%)	49/193 (25%)	
Wunderink (2003)	64/321 (20%)	61/302 (20%)	

Vancomycin Estimates

- Start with uniform priors on θ (and δ)
- Use Rubinstein results as historical data: $x_0/n_0 = 49/193$
- Empirical Bayes: $\hat{\delta} = 0.44 \rightarrow$ prior sample size $\hat{\delta}n_0 = 86$
- Posterior mean: $\hat{\delta} = 0.52 \rightarrow$ prior sample size $\hat{\delta}n_0 = 101$

Operating Characteristics

- Viele et al. (2014) look at performance of various borrowing methods for the control arm of a randomized controlled clinical trial (RCT).
 - Expected Prior Sample Size
 - Mean Square Error
 - Power
 - Type I Error
- Binomial setting:

Historical control arm data: $x_0 = 65, n_0 = 100$ Current control arm data: $X_{\star} \sim \text{Bin}(n_{\star} = 200, \pi_{\star})$ Current treatment arm data: $X_T \sim Bin(n_T = 200, \pi_T)$

- "Bayesian Significance" if $Pr(\pi_T > \pi_*) > 0.975$
- Empirical Bayes compares favourably!

Expected Prior Sample Size

Mean Square Error

Leonhard Held (UZH)

Power to Detect Difference $\pi_T - \pi_\star = 12\%$

Type I Error $\pi_T - \pi_{\star}$

Box's *p*-value

▶ Box (1980) defined a *p*-value to measure conflict between prior and data X_{*} = x_{*}:

$$\Pr\left(p(X_\star \mid x_0) \le p(x_\star \mid x_0)\right)$$

- → Probability that observed (or more extreme) data could come from prior predictive distribution $p(x_* | x_0)$
 - Low p-values suggest that prior is in conflict with data
 - Calculate predictive distribution by

$$p(x_{\star} | x_0) = \int_{\theta} \int_{\delta} p(x_{\star} | \theta) \times p(\theta, \delta | x_0) \, d\delta d\theta$$

Box's *p*-value for Power Prior

- ▶ Power prior based on normal likelihood: $X_0 \sim N(\theta, 0.2^2)$
- Current data also normal: X_{*} ~ N(θ, 0.2²)
- Uniform prior on θ (and δ)

 \rightarrow EB automatically adjusts compatibility between prior and data.

Leonhard Held (UZH)

II. Adaptive Prior Weighting in Regression

- A multivariate normal prior distribution on the regression coefficients is a natural choice, especially if prior comes from historical data.
- However, careless specification of mean and covariance matrix may have strong effects on posterior inference.
- We discuss empirical and fully Bayesian approaches to avoid extreme prior-data disagreement and agreement, by adaptively weighting the prior distribution.
- The proposed methodology provides an alternative to the recently proposed Cauchy prior distributions for the regression coefficients of suitably standardized covariates.

Gelman and others (2008)

Preliminaries: Prior Weighting in the Linear Model

Consider the linear model with mean

$$\mathsf{E}(y_i) = \alpha + \mathbf{x}_i^\top \boldsymbol{\beta}$$

with residual variance σ^2 and centred regression coefficients $\mathbf{X}^{\top} \mathbf{1} = \mathbf{0}$. An improper reference prior for α and σ^2 , $f(\alpha, \sigma^2) \propto \sigma^{-2}$, is combined with a proper normal prior for $\boldsymbol{\beta}$:

$$\boldsymbol{eta} \,|\, \sigma^2 \sim \mathsf{N}_{\boldsymbol{d}}(\boldsymbol{
u}, \boldsymbol{g}\,\sigma^2\,\boldsymbol{\Sigma})$$

$$\rightarrow$$
 Prior weight $\delta = 1/g > 0$

Note: Prior weight δ can be larger 1

 $\rightarrow\,$ Prior up- and downweighting possible

The *g*-prior

► Zellner's *g*-prior (Zellner, 1986) uses $\Sigma = (\mathbf{X}^{\top}\mathbf{X})^{-1}$ → Shrinkage of $\hat{\beta}_{\text{ML}}$ towards ν :

$$\mathsf{E}(oldsymbol{eta} \,|\, \mathbf{y}) = rac{\hat{eta}_{ ext{ML}} + 1/g \cdot oldsymbol{
u}}{1 + 1/g}$$

• For
$$\boldsymbol{\nu} = \boldsymbol{0}$$
 we have

$$\mathsf{E}(oldsymbol{eta}\,|\, \mathbf{y}) = rac{g}{g+1}\, \hat{oldsymbol{eta}}_{ ext{ML}}$$

 \rightarrow Shrinkage factor t = g/(g+1)

Box's *p*-Value

 $lacksim {
m Take} \ \hat{eta}_{
m ML}$ as the "data" with distribution

$$\hat{\boldsymbol{\beta}}_{\scriptscriptstyle\mathrm{ML}} \,|\, \boldsymbol{eta}, \sigma^2 \sim \mathsf{N}_{d} \left(\boldsymbol{eta}, \sigma^2 \,(\mathbf{X}^{ op} \mathbf{X})^{-1}
ight)$$

Combined with prior β | σ² ~ N_d(ν, g σ² Σ) we obtain the prior predictive distribution

$$\hat{\boldsymbol{\beta}}_{\scriptscriptstyle\mathrm{ML}} \,|\, \sigma^2 \sim \mathsf{N}_d \left(\boldsymbol{
u}, \sigma^2 \left\{ (\mathbf{X}^{ op} \mathbf{X})^{-1} + g \, \boldsymbol{\Sigma}
ight\}
ight)$$

SO

$$\mathcal{T}(g) = \left(\hat{oldsymbol{eta}}_{ ext{ML}} - oldsymbol{
u}
ight)^ op \left\{ (oldsymbol{X}^ op oldsymbol{X})^{-1} + g \, oldsymbol{\Sigma}
ight\}^{-1} \left(\hat{oldsymbol{eta}}_{ ext{ML}} - oldsymbol{
u}
ight) / \sigma^2$$

can be evaluated against a $\chi^2(d)$ distribution.

Exact calculation based on F-distribution is also possible.

Box's *p*-Value: Some Properties

- Box's $p \to 1$ for the "uninformative" choice $g \to \infty$
- Copas (1983) has derived an empirical Bayes (EB) estimate of g under the g-prior:

$$\hat{g} = \max\{F_{\mathsf{obs}} - 1, 0\},\$$

where F_{obs} is the F statistic for $H_0: \beta = \nu$.

- → For $F_{obs} > 1$, one can show that Box's *p*-value is $p \approx 0.5$, *i.e.* empirical Bayes automatically adjusts the compatibility between the prior and the data.
 - This suggests to estimate g for arbitrary prior covariance matrix Σ by solving the equation T(g) = E{χ²(d)} = d for g, i.e.

$$\hat{g} = \left\{ egin{array}{cc} \mathcal{T}^{-1}(d) & ext{if } \mathcal{T}(0) > d \\ 0 & ext{else} \end{array}
ight.$$

Generalized Linear Model

► Consider now a generalized linear model (GLM) with outcomes y_i with mean $\mu_i = h(\eta_i)$ and linear predictor

$$\eta_i = \alpha + \mathbf{x}_i^\top \boldsymbol{\beta}$$

Prior f(\(\alpha\)) \propto 1 combined with \(\beta \sim N_d(\nu, g \Sigma)\)
MLE \(\heta_{ML}\), where \(\heta_{ML}\) | \(\beta \sim N_d(\beta, \mathcal{T})\), is used to evaluate

$$T(g) = (\hat{eta}_{\scriptscriptstyle ext{ML}} - oldsymbol{
u})^ op (oldsymbol{\mathcal{T}} + g \, oldsymbol{\Sigma})^{-1} (\hat{eta}_{\scriptscriptstyle ext{ML}} - oldsymbol{
u})$$

against a $\chi^2(d)$ distribution to compute Box's *p*-value.

EB estimate under the (generalized) g-prior based on the deviance z_{obs} (Copas, 1997):

$$\hat{g} = \max\{z_{\rm obs}/d - 1, 0\}.$$

• Can be extended to arbitrary $N_d(\nu, g \Sigma)$ prior by solving T(g) = d.

Application: Study on Obstetric Care and Neonatal Death

From Sullivan and Greenland (2013):

Table 1 Multiple logistic regressions of neonatal-death risk in a cohort of 2992 births with 17 deaths, intercept and 14 regressors in each model. Shown are the prior median odds ratio OReview and 95% limits; ML estimates with 95% Wald and profile-likelihood (profile) limits; approximate posterior medians from data augmentation including a prior on all 14 regressors with 95% Wald and profile limits, using prior data with 1/2 correction (A=4.5) or with rescaled prior data (S=10, A=400); and simulated posterior medians and 95% limits (2.5th and 97.5th percentiles) from MCMC with normal priors

				Approximate posterior median (95% posterior limits)		
Regressor (X _j)	Deaths with X _j > 0	Prior median OR _{prior} (95% prior limits)	ML estimate: A=0 (95% Wald and profile limits)	Data augmentation: A=4.5 ^a	Data augmentation with a rescaled (S = 10) prior ^a	MCMCb
Non-White	5	2 (0.5,8)	1.9 (0.55,6.5) (0.51,6.3)	1.8 (0.75,4.2) (0.72,4.1)	1.8 (0.73,4.3) (0.71,4.2)	1.8 (0.70,4.2)
Early age	3	2 (0.5,8)	1.6 (0.39,6.7) (0.32,6.1)	1.6 (0.65,4.1) (0.62,3.9)	1.6 (0.63,4.1) (0.61,4.0)	1.6 (0.59,4.0)
Nulliparity	8	2 (0.5,8)	1.5 (0.51,4.7) (0.50,4.9)	1.6 (0.69,3.5) (0.68,3.6)	1.5 (0.67,3.6) (0.67,3.6)	1.6 (0.67,3.6)
Gestational age	10	4 (1,16)	4.9 (2.4,9.8) (2.4,10.0)	4.5 (2.5,8.0) (2.5,8.1)	4.5 (2.5,8.1) (2.5,8.1)	4.6 (2.5,8.3)
Isoimmunization	1	2 (0.5,8)	3.0 (0.91,10) (0.62,8.5)	2.4 (0.95,6.0) (0.87,5.6)	2.4 (0.94,6.2) (0.85,5.7)	2.3 (0.81,5.6)
Past abortion	2	1 (0.25,4)	0.72 (0.18,2.9) (0.12,2.3)	0.84 (0.34,2.1) (0.31,1.9)	0.83 (0.33,2.1) (0.31,1.9)	0.79 (0.29,1.9)
Hydramnios	1	4 (1,16)	60 (5.7,635) (2.8,478)	5.8 (1.6,21) (1.6,22)	6.1 (1.6,23) (1.6,23)	6.0 (1.6,22)
Labour progress	2	2 (0.5,8)	0.50 (0.06,3.9) (0.04,2.8)	1.3 (0.45,3.5) (0.42,3.3)	1.2 (0.43,3.5) (0.41,3.3)	1.2 (0.40,3.3)
PCA	1	2 (0.5,8)	3.1 (0.33,29) (0.15,20)	2.2 (0.71,7.1) (0.67,7.0)	2.3 (0.68,7.5) (0.65,7.2)	2.2 (0.64,7.1)
No monitor	3	2 (0.5,8)	1.2 (0.32,4.9) (0.35,5.9)	1.8 (0.68,4.5) (0.70,4.7)	1.7 (0.66,4.6) (0.68,4.8)	1.8 (0.71,5.0)
Twin, triplet	3	4 (1,16)	8.2 (1.8,37) (1.5,33)	5.1 (1.9,14) (1.8,14)	5.2 (1.9,15) (1.8,14)	5.3 (1.8,14)
Public ward	6	2 (0.5,8)	0.86 (0.26,2.9) (0.25,2.8)	1.3 (0.56,3.0) (0.54,3.0)	1.3 (0.54,3.0) (0.53,3.0)	1.3 (0.53,3.0)
PROM	1	2 (0.5,8)	0.54 (0.06,4.8) (0.03,3.2)	1.3 (0.45,3.5) (0.41,3.3)	1.2 (0.43,3.5) (0.41,3.3)	1.2 (0.39,3.3)
Malpresented	3	4 (1,16)	3.9 (0.88,17) (0.73,15)	3.9 (1.5,10.0) (1.4,9.8)	3.9 (1.4,10) (1.4,9.9)	3.8 (1.4,10.0)

ML: Maximum likelihood: MCMC: Markov-chain Monte Carlo: PCA: placental or cord anomaly. PROM: premature rupture of membranes.

Variables are indicators except early age (0=20+, 1=15-19, 2=under 15), gestational age (0=no, 1=36-38 weeks, 2=33-36 weeks; under 33 weeks excluded), isoimmunization (0=no, 1=Rh, 2=ABO), labour progress (0=no, 0.33=prolonged, 0.67=protracted, 1=arrested) and past abortion (0=none, 1=1, 2=2+). *Limits shown are Wald exp(estimate = 1.96 × standard error) and profile likelihood from PROC LOGISTIC.

^bNumber of MCMC samples was 100 000

Assessment of Prior-Data Conflict

 $\begin{array}{ll} \mbox{Prior I:} & \mbox{N}_{14}(\nu, g \ \Sigma) & (\mbox{Sullivan and Greenland} \ (2013) \ \mbox{prior}) \\ \mbox{Prior II:} & \mbox{N}_{14}(\mathbf{0}, g \ \Sigma) & (\mbox{ridge prior}) \\ \mbox{with} \end{array}$

$$\begin{array}{rcl} \boldsymbol{\nu} & = & \log(2,2,2,4,2,1,4,2,2,2,4,2,2,4) \\ \boldsymbol{\Sigma} & = & \operatorname{diag}(1/2) \end{array}$$

- Prior I gives Box's p = 0.91 (!) for g = 1.
- Prior II gives Box's p = 0.13 for g = 1.
- \rightarrow no evidence for prior-data conflict under both priors.
 - The EB estimates are $\hat{g} = 0$ (p = 0.60) and $\hat{g} = 2.10$ (p = 0.45)
 - However, EB estimates $\hat{g} = 0$ are useless for parameter estimation.

Hyper-g Prior

- The EB approach avoids arbitrary choices of g which may be at odds with the data. However, the uncertainty about the estimate ĝ is ignored and the posterior of β is degenerate for ĝ = 0.
- ▶ We propose to use the hyper-g prior with shrinkage factor

$$t = g/(1+g) \sim \mathsf{U}(0,1)$$

Liang and others (2008)

- $\rightarrow\,$ Prior median of g is 1, distribution of g and $\delta=1/g$ are the same.
- ightarrow No preference regarding up- or downweighting
 - Under the g-prior, posterior mode of t is equal to the corresponding EB estimate.

Held and others (2015)

 \rightarrow Hyper-g prior regularizes EB approach.

Other Choices

• Horseshoe prior: $t \sim Be(1/2, 1/2)$

Carvalho and others (2010)

• Strawderman-Berger: $t \sim Be(1, 1/2)$

Berger (1980)

 Cauchy prior distributions for the regression coefficients corresponds to a (possibly scaled) IG(1/2, 1/2) prior for g

Gelman and others (2008)

Other Choices

Horseshoe

Strawderman-Berger

Standard Cauchy

t

Cauchy with scale 2.5

t

Implementation in INLA

Rewrite linear predictor as

$$\eta_i = \alpha + \underbrace{\mathbf{x}_i^\top \boldsymbol{\nu}}_{\text{Offset}} + \mathbf{x}_i^\top \widetilde{\boldsymbol{\beta}} \text{ where } \widetilde{\boldsymbol{\beta}} \sim \mathsf{N}_d(\mathbf{0}, g \boldsymbol{\Sigma}).$$

- → Use generic Gaussian Markov random field (GMRF) with mean **0** and pre-specified precision matrix Σ^{-1} up to the possibly unknown multiplicative weight factor w = 1/g.
- Now use the copy feature in INLA to define d identical copies of $\tilde{\beta}$.
- → The *j*-th component of the *j*-th copy of β is then multiplied with the covariate values $\mathbf{x}_j = (x_{1j}, \dots, x_{nj})^\top$ as a "weights vector".
 - ▶ Hyper-g (or any other) prior on g can be incorporated.

Hyper-g Prior and Posterior in Neonatal Death Study

Posterior of β_{hydram} (Prior I)

beta

Method	OR Estimate	95% CI
ML	60	5.7 to 635
g=1	6.1	1.6 to 22.8
Hyper-g	4.3	2.3 to 10.5

Posterior of β_{hydram} (Prior II)

beta

Method	OR Estimate	95% CI
ML	60	5.7 to 635
g=1	1.6	0.4 to 6.3
Hyper-g	1.8	0.4 to 13.4

Simulation Study (preliminary results)

- $lacksymbol{0}$ Based on the (centred) design matrix f X of neonatal death study
- Oraw k = 1, ..., 100 times from misspecified prior

a)
$$\beta^{(k)} \sim \mathsf{N}(\boldsymbol{\nu} + \boldsymbol{\epsilon} \mathbf{1}, \boldsymbol{\Sigma}), \, \boldsymbol{\epsilon} \in \{-3, -2.5, \dots, 0, 0.5, \dots, 3\}$$

b) $\beta^{(k)} \sim \mathsf{N}(\boldsymbol{\nu}, \boldsymbol{\epsilon} \boldsymbol{\Sigma}), \, \boldsymbol{\epsilon} \in \{1/4, 1/2, 1, 2, 4\}$

- Simulate $\mathbf{y}^{(k)} \sim \mathsf{Bin}(1, \mathsf{expit}\{\mathbf{X}^{\top} \boldsymbol{\beta}^{(k)}\})$
- **③** Use INLA with $eta \sim {\sf N}(
 u, g \, \Sigma)$ prior and different hyperpriors for g .

Simulation a): Mean estimate of g

Simulation b): Mean estimate of g

Simulation a): RMSE

e,

placord

0.6

nomonit 0.8

RMSE

ward

prerupt

Summary and Outlook

- Empirical Bayes is useful to downweight historical data using the power prior.
- In generalized regression, hyper-g prior regularizes EB and allows for both up- or downweighting of the prior distribution.
- Approach can be viewed as replacing a normal prior on the regression coefficients with a "robustified" scale mixture of normals prior.
- Implementation in INLA allows to extend the approach to more complex models, e.g. generalized linear mixed models or spatial models.
- Can also be generalized to several prior weight parameters for blocks of regression coefficients.

Literature I

- Berger, J. (1980). A robust generalized Bayes estimator and confidence region for a multivariate normal mean, *Annals of Statistics* **8**(4): 716–761.
- Carvalho, C. M., Polson, N. G. and Scott, J. G. (2010). The horseshoe estimator for sparse signals, *Biometrika* **97**(2): 465–480.
- Copas, J. B. (1983). Regression, prediction and shrinkage, *Journal of the Royal Statistical Society. Series B (Methodological)* **45**(3): 311–354.
- Copas, J. B. (1997). Using regression models for prediction: shrinkage and regression to the mean, *Statistical Methods in Medical Research* **6**(2): 167–183.
- Duan, Y., Smith, E. P. and Ye, K. (2006). Using Power Priors to Improve the Binomial Test of Water Quality, *Journal of Agricultural, Biological, and Environmental Statistics* 11(2): 151–168.
- Gelman, A., Jakulin, A., Grazia, M. P. and Yu-Sung, S. (2008). A weakly informative default prior distribution for logistic and other regression models, *Annals of Applied Statisticts* **2**: 1360–1383.

Literature II

- Greenland, S. (2006). Bayesian perspectives for epidemiological research: I. Foundations and basic methods, *International Journal of Epidemiology* **35**: 765–775.
- Greenland, S. (2007). Bayesian perspectives for epidemiological research. II. Regression analysis, *International Journal of Epidemiology* **36**(1): 195–202.
- Held, L., Sabanés Bové, D. and Gravestock, I. (2015). Approximate Bayesian model selection with the deviance statistic, *Statistical Science* **30**: 242–257.
- Ibrahim, J. G. and Chen, M.-H. (2000). Power prior distributions for regression models, *Statistical Science* **15**(1): 46–60.
- Liang, F., Paulo, R., Molina, G., Clyde, M. A. and Berger, J. O. (2008). Mixtures of *g* priors for Bayesian variable selection, *Journal of the American Statistical Association* **103**(481): 410–423.
- Neuenschwander, B., Branson, M. and Spiegelhalter, D. J. (2009). A note on the power prior, *Statistics in Medicine* **28**(28): 3562–3566.

Literature III

- O'Hagan, A., Buck, C. E., Daneshkhah, A., Eiser, J. R., Garthwaite, P. H., Jenkinson, D. J., Oakley, J. E. and Rakow, T. (2006). *Uncertain Judgements; Eliciting Experts' Probabilities*, Wiley, Chichester.
- Senn, S. (2007). Statistical Issues in Drug Development, 2nd edn, Wiley.
- Spiegelhalter, D. J., Abrams, K. R. and Myles, J. P. (2004). Bayesian Approaches to Clinical Trials and Health-Care Evaluation, Wiley, New York.
- Sullivan, S. G. and Greenland, S. (2013). Bayesian regression in SAS software, International Journal of Epidemiology **42**(1): 308–317.
- Viele, K., Berry, S., Neuenschwander, B., Amzal, B., Chen, F., Enas, N., Hobbs, B., Ibrahim, J. G., Kinnersley, N., Lindborg, S. et al. (2014). Use of historical control data for assessing treatment effects in clinical trials, *Pharmaceutical Statistics* 13(1): 41–54.
- Zellner, A. (1986). On assessing prior distributions and Bayesian regression analysis with *g*-prior distributions, *in* P. K. Goel and A. Zellner (eds), *Bayesian Inference and Decision Techniques: Essays in Honor of Bruno de Finetti*, Vol. 6 of *Studies in Bayesian Econometrics and Statistics*, North-Holland, Amsterdam, chapter 5, pp. 233–243.

Leonhard Held (UZH)